KINETIC THEORY OF SHOCK-STRUCTURE USING SMALL PERTURBATION
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1. Imtrvoduction.

Considerable effort has been expended in recent years in an endeavour
to understand the shock-structure problem and surveys concerning the
shock-structure problem can be found in [1,2,3]. Much progress in this
direction has been made in recent years and the account is given in refer-
ences [4-9], In general there ‘have been two trends in this direction,
Firstly, the Boltzmann equation is reduced to the equations of macroscopic
variables for general gas dynamics by the method of iteration initiated by
Maxwell and these equations are applied to shock-waves under special con-
ditions. Secondly, the method consists in seeking a special function which
may imply the main characteristics of the distribution within a shock-wave,
The unknown variables involved in this function are determined, so that
the function will satisfy equations of moments of the same number as that
of the unknown variables. The method of Mott-Smith seems to be the only
one which belongs to this category. It seems that there is no sequence of
logic which enables one to find such a function, '"The weapon seems to be
a complex of knowledge accumulated by experiences, which might be called
intuition'.

The term 'structure" as applied to gas dynamic discontinuity refers to
the values of the physical properties of the fluid within the small but finite
thickness of the discontinuity. The most important gas dynamic discontinuity
is the shock-wave, in which there are abrupt changes in the physical con-
ditions (viz. wvelocity, temperature, etc, etc.) of a moving fluid. Such
abrupt changes can occur only when flow velocities exceed the acoustic
velocity and hence are characteristic of supersonic flows, The actual zone
within which transition from one physical state to a second takes place
are finite but extremely narrow (of the order of several mean free paths).
The process or mechanism that results in this transition is very complex
from a physical as well as mathematical point of view., Further, the problem
of shock-wave structure is not beset by the mysteries of gas-solid inter-
actions on a molecular scale, Thus surface effects such as slip do not
give rise to any sort of complications. The solution of Boltzmann equation
is, in general, a matter of considerable difficulty, even in cases cor-
responding to the physically simplest situation.

The problems iIn kinetic theory of gases are complicated to handle in
practise because of the intractable nature of the Boltzmann equation's binary
collision term. For the general case, one has a non-linear, integro-dif-
ferential equation, the integral involving a fivefold integration. Up to now
various methods have been employed to study the boundary value or the
initial value problems connected with Boltzmann equation and the salient
features of these methods are sketched in [10]. We employ the kinetic
model of Boltzmann equation, commonly known as the Krook model, The
Krook model is considerably simpler than the standard Boltzmann equation,
since the distribution function enters into the collision terms in a simple
way. The mathematical simplification introduced with the model enables
one to solve problems which are physically more complex than those soluble
with the standard Boltzmann equation; in addition, one is able to treat
definite initial and boundary-value problems.
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Moreover the model possesses at least the minimum requirements of a
meaningful kinetic equation in spite of its obvious limitations as for instance
disagreement with kinetic theory on the ratio of viscosity to heat conduc-
tion coefficients. It has the required five collisional invariants, it has the
H-Theorem and it reduces to the equilibrium (max,) distribution in the
long time limit of the spatially homogeneous case, More details about the
model can be found in [11].

In the present work is introduced a new approximation procedure based
on the use of small perturbation technique for the solution of kinetic model
equation in case of shock-structure problem. The molecules of the gas
are considered to be monatomic but with no internal degrees of freedom.
The influence of external forces on the distribution function is neglected.
The results are shown to be in good agreement with those obtained by the
other methods, The method is applicable in case of weak shocks and as
far as the author is aware, the method of small perturbation technique was
never applied for the solution of the problem of shock-wave structure.
The calculations are simpler although quite tedious and cumbersome,

2. Basic Equation and Relations.
The Krook model equation is written as

of af _

at4—X.a£—An(F—f) (1)
where f(r, v, t) is the distribution function and v, r and t are the molecular
velocity vector, the space vector and time respectively, The number A is
a free parameter which In general may depend on the state of the gas.

F inequation (1) is the locally Maxwellian distribution function represented
by

F=n [21?71@] e [' 3T (V- 1—1)2} )

where u is the mass velocity of the flow and m, k and T are the mass
of the particle, the Boltzmann constant and the absolute temperature res-
pectively, Here n, u and T are, in general, functions of r and t, and
given by - : '

n = [ fay )
u=g [yt *
B A e g o ®)

where the integrals are evaluated over the full range of the molecular
velocities.

We take shock-fixed coordinates with the Ve1001ty u in the positive x-
dlrectlon (fig. 1).

The state ahead of the shock-wave, i.e. for x —-, will be denoted by
(1), the downstream state x — +w by (2), viz.

n(-o) =n,;, u(-°) =u; etc,
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and n(+e) = ng, u(+=) = ug etc,
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Fig.1l. Notation.

Equation (1) for plane normal shock can be written as

df
Yy dx - An(F -f) (6)
Integrating this formally for v, 2 0, respectively, and imposing the boundary
conditions

B 3/2 2

f(-;v) = Fy = g (51) exp [-By(v - uy)”] .. (7)
3/2

2

freoiv) = F, = ny (B2) exp [By(v - up)?) (8)

where the parameters are determined from the Rankine-Hugoniot condi-
tions, we obtain expressions for the half-range distribution functions i.e.,

X _ X -
1
f(X; VX > O) = f+ =J’ AvnF exp(- J Al"l]dx ) dx! (9)
. _o0 X ' X
L X _
X _ x _
3
f(X; Vx < O) =f = J. AVnF eXp(- j .A_..n_(_ix_) dx! (10)
+00 L < v N

where we have omitted the ''complementary-function' solution of (6) as the
boundaries are at 1nf1n1ty Far away from the shock f(+), v) = Fi9(V)
irrespective of the sign of v,, and the boundary conditions will be satisfied.
In other words at large distances from the shock the local flow parameters
tend to the respective constant values at the boundary, the deviations from
Maxwellian becomes increasingly small and at the limit the distribution
function is identical to the Maxwellian and the boundary conditions are
satisfied, The discussion of this point is given in [5], [7] and [12].
Inserting the values of f in (3), {4) and (5) we obtain

2| ¢ -
n<x>=A<%>“JTS/QJ—exp{ [

-0

o 2 4
+f_r;/§f_1_ { 5 X" - (v -w?(|dvax'.  (11)
- T v kT -
X ~ [¢] X
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j_exp J‘__dx - ('\_7--1_,1_)2 +

n(ou(x) = A (2" I

T 3/2 kT
f f_exp And o™ (v-w|vdv ax'. (12)
T 3/2 2kT T
X
3k m 3/2 An " m 2
2 () T(x) = A (o) f —expy- | 2Rax" - I (v-y)
m 2kT T3/2 v, 9kT -
00 X
2 W2
f J‘_.. exp J‘ -2 (v-uw (v - u) dvdx, (13)
T3/2 9kT

Integration of the equations (11), (12) and (13) with respect to vy and
v, yields

2 oo
A
n(x) = A o J‘ nl J —_exps<- —nd w3 (v, -u) +
2km Tz vy Vy 2kT
-00 o x'
0 9 @ X A
+J nl J._l_exp -jidx"—ﬂ(vx- )° Hdv, dx (14)
T: vy Vy 2kT
X 0 x'
X 2 o0 X
n(xju(x) = A o nl j expq - A gy M (v -u)2 +
2kn ) T* Vg 2kT
+J n j exp -J Dax" - 2 (v - w)’tldv dx'. (15)
Tt vy 2kT
: e

n(x)T(x) = j n?T? f __.exp{ j_d x - (v -w)?
V2k7r okT
J‘ 1 An 1 m
n?T J_ { 2haxt - 2 (v, -u) Hdvxdx +
Jv oKT

X

X

2A , m, 3/2 2 i f | 2
+ 20 (== T?® - +
37 (Zk) fn : ! exp{ f C%T ar 2 }

o 1‘ oo X 9
+J. n®T™ f expq - .;- An gy o (v, - u? vxdvxdx'-w_. (16)
4 v, 2KT 3k

X [¢]

Equations (14)-(16) represent a set of singular, non-linear integral equa-
tions. ''Conservation of mass'' relation is used to express n in terms of
u and to eliminate one of the integral equations. In the following section
small perturbation technique for solving the system (14)-(16) is developed.
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3. Geneval Method of Solution.

The disturbance number density, temperature and velocity v, 7 and §
are introduced in a manner similar to that of Takao [13], but with suitable
modifications as follows (see the Appendix A):

n=n(l-ev)
T = T,[1+e(1-)7] (17)
u = u(l+€g)

where n,, T,, u, are some reference number density, temperature and
mass velocity which may be chosen as

T, = 3(Ty +T)
n, = z{n; +ny) (18)
u_ = 3(u; +uy)
where n;, ny, u;, uy, T; and T, have the same meaning as shown in the

Figure.
Further € is very small and is written as

U; - Uy
€ = — ., (19)
U+ Ug
and |v| =1, |[7]£1, [E] =1 (20)

Again we expand v, 7 and £ in powers of € as

v = :‘j_‘,o v, (x)e
r= E o (e (21)
= L g (R

where n is now summed up and should not be confused with "n' denoting

the density of the gas.

Further x = x, + x/e. Our method consists of expanding the equations
{14), (15) and (16) in powers of € and from these expansions we get the
governing equations for v , 7, and §; the solution of which will be sought.

Left-hand sides of equations (14)-(16) are given respectively in terms
of € as follows:

n =n(1-ev) {22)
nu = ngu [1+eE-v) -e’Ev] (23)
and 0T = n,T,[1+e{(1-07 - v} - *(1-m)vr] (24)

It is fit to remark here that in the proceding analysis integral equation
(14) is not used and instead we take advantage of the remark made at the
end of the last section.

Expressing the right-hand sides of the equations (15} and (16) in powers
of € we get respectively
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. An, o m(v, -uo)2
1+ €€ -€v -~ €Ev = exp (x-x' - X
Uq A4 €Vy 2kT,

%2 2

0 dx'dv, no_ . m(v, +u )
xl:l + el + €L2+...:| exp (xx') - ~——— ; x
2kT
dx'dv,
X {similar expression} s (25)
€
mug 2mu§ mug mug 2mu§
1+ + e](1-y) E -v - v+ & gz- Ev -
3kT, 3kT, 3kT, 3kT, 3kT,
X o P)
mAn m An, _ _ m(v, -u,)
-~ (1 -ywr | = j‘ exp 9- (x-%x') - ———— r x
3kT, 2knT, g ev, 2kT,
v, dx'dv F e An, _ _ m(v_+u )2
x[l+€L1 +€2L2+ .._]L____X+j exp <- o( -x') - X o X
¥ €V, 2kT
. X X o]
v, dx'dv, 2An, m s An, _ _
X {similar terms} + exp ¢ -~ (x-x') -
€ 3 2kaT, €v,
-0 O
9 -
m(v, -u,) X dx'dv,
-—_— [1 + €L, + €L, + ]  ——
2kT, €EVy
m(vx+uo)2 d;('dvX
ffexp ——(x—x ) - — [similar terms] P (26)
2kT, €V,

where Ly, L,, L4 and L, etc.etc. are functions of the variables §, v, 7
X

and f vdx''. Moreover, the occurrence of these variables in the above-~

X
mentioned functions is of the same order as that of € in that respective
function,
Integrating the above equations by parts and after some tedious calcula-
tions equations (25), (26) give rise to the following equations respectively:

2y — - (1~y) — + (1=y) — = 3(v+l) —5 = (v43) —+ 3(1-v) —
dx dx dx  An dx dx dx?

dE dv dr  u_ € d%E dZv d2r
2 +

o]

dv dv dv dg
€ |[(1-v)r —+ (1-v)1 — + 2VE (— ~ —) (27)
dx dx dx dx
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dg dv dr  eu, [ da?%e , d*v
(3v+5) — =~ (v+5) — + 5(1-v) — = L4v(v+4) — * (Y*#8Y+5) —+
dx dx dx Ang dx dx
a%r dv dr dv dE
+ (10-27-85") —| + €| (v+5)v — =~ 5(1-n)E — + 5(1-y)7 (— - —) +
dx dx dx dx dx
dv dg
+ 208 (— -~ —)|. (28)
dx dx

Putting the series (21) in the above two equations we have up to 0(€)

d&4 dv, dry  u, . B, dEl
2y — ~ (1+y) — + (1=y) — = (v-3) + (29)
dx dx dx Ano dx? dx
dE, dv, dr;  u, a2, dg?
(37+5) — = (¥¥5) — + 5(1-v) — = (v-1) +5 — (30)
dx dx dx An dx? dx
dg
with  (5-37) =0 (31)
dx

From equation (31) we have v = 5/3 for &9 # 0, the value which comes

out of the analysis =~ confirming the physical fact underlying the B~G-K
model itself. Moreover, in order to satisfy the Rankine-Hugoniot relations
we must have vy, = T, = E, and this fact has been exploited in the above
equations (29) and (30). Taking into account the remark made at the end
of the last section, i.e. one of the integral equations can be eliminated with
the aid of conservation of mass relation, we finally arrive at the following
governing equations:

10 d&; 8 dv; 2dm  u, 4 d%, dE?
: — +

—_———— e — — = . (32)

3 dx 3 dx 3 dx An, 3 dx> o dx
dg, 20 dv; 10 dm;  u, 2 d%E, dE2

10 — ~— — = — — = . — +5 (33)
dx 3 dx 3 dx  An, 3 dx* dx

Ey = v = B (34)

for v = 5/3.
With the help of (34) equations (32) and (33) reduce to

10 dE2 2 dv, dn u, 4 d%, dE?

— t—(— - —) = .= + (35)

3 dx . 3 dx  dx An, 3 dx? dx
dg2 10 dv; . dm u, 2 d%E, dg 2

10 +— (— - —) = .- + 5 (36)
dx 3 dx  dx An, 3 ax* dx '

From equations (35) and (36) it follows that
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20 dE2  u, d2g,
. 6
3 dx  An,  d¥°

(37)

2 2
d“E, 10 An_ dE,
or = — (38)

dx* 9 wu, dx

After integration equation (38) results as

20 An_x
1 - ¢cexp —

9u0
= (39)

£o
20 An,x
1+ c¢cexp{ —m

9u

o]

where c is an arbitrary constant. This completes the solution of the problem.
Finally it is concluded that the method of small perturbation technique

is suitable for studying the structure of weak shock-waves and the results
seem to agree with the N-S solutions.

APPENDIX A

Uy = Uy
Expansion of n, T and u in teyms of € = —— |
Uy + Uy
We write n as
ng +ng my N
n= + 14
2 2
n; * ng ny - ng
= —— (1 + —— V)
2 nl + n2
u, - u,
=n, (1 + v) for nju; = nyu,
u; + u,
Hence
u; - Uug
n =n, (1 -ev) where € = ———, (I)
u; t uy
Similarly
T, + Ty T, - Ty
T = + T
2 2
T; - Ty
=T (1 + ——— 7) (I1)

T, + T,
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T; - Ty
We have to express ———— in powers of ¢ and in order to do that we
Ty + Ty
use the normal shock relations. We know that
Uy - Uy
u; + uy

Uy 1"6

or —= . (I11)
uy 1+c¢€

Further the normal shock relations are

U, v -1 2
_— + 5 (IV)
u; v+l (y+ )M
p, 2y , Y-l
— = M - (V)
p; v+l v+ 1
Ty Py Uy
—_ e — (VI)
T, p1 wy
From (IV) we obtain
1+ €
M =
1 ~€vy
The substitution of which in (V) ylelds
Py 1+ vye
pl 1 - ey
Consequently (VI) gives
T, (1 +ev)(1 -€)
Ty (1 -~ ey)(1 +€)
T, -Ty (L+en)(l+e) = (1+en)(l-e)
or =
Ty +Ty (I -ev)(1+¢€ - (1+ey)(l-¢)
€1 -7
1 - 62‘)/ '
Z €(1 - v) neglecting higher powers of e. (VII)

Thus substituting the value of (T; - Tg)/(T; + Ty) in the expression for
T we obtain

T = T,[1+e1-vr7]. (VIII)
Carrying out the similar procedure we have

u = u, (1 + €E), (IX)
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APPENDIX B

Integvals used in the simplification of Equations (25) and (26)

It seems sufficient to mention the type of integrals which we encounter
in our analysis. Firstly, we come across the following type of integral viz.

X

~A o
fexp{ AT [z, o]ax, ()

€EVy

~c0

where L is some function of X' and €. Integrating (i) by parts one gets
X -
- €V, €V -An, _ _ dL(x',€) _
L(x,€) — - — exp (x-x") f ——— dx'

!
An0 An, v €V dx

X

continuing this process one obtains

€V ev. 2 dL €V, 2 -An0 - d’L
) J exp

- X X
L(x,€) — - ( —
An Ano dx An, v «
It is to be noted, however, that partial integration is repeated so often
that the remaining integral is of sufficient small order in € so as to be
neglegible.
Secondly, we have the integral

F 2
J x™ e dx ‘ (ii)
(o]

where n is an integer. This integral is well-known to the people working
in kinetic theory of gases. ‘
Further the expressions for L, and L, are as follows:

X
mug m(1-vy) 0 n,
Ly = — (v,mu)f + ——— (v,mu,) 7 + — | vax',
kT, 2kT, €v,
<
2 X 2 P
ng mn,u, .
Ly = vdx"| + ——— (v, -u,)E f vdx'' +
ezv)z( kT ev,
X X'
X
mn,(1-7) 2 " m®ug 2,2
e (vy-u,)' T vdx' + =5 (ve=u,)'8" =
2kT evy It 2k" T,
mug mu§ (1-v) 5 mu(1-~y)
- £ + o (Vg ~U,) BT - ————— (v, -u, )87 +
2kT, 2k" To kT,
m” (1-7)° 4.2 m(l—'y)2 2.2
P (V) T s e (V) T
2k° T, 2kT,
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